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A b s t r a c t  

Bragg intensities from neutron and X-ray diffraction 
data of C6o single crystals were used to determine 
the nuclear- and electron-density distributions of C60 
at room temperature. The anisotropic density distribu- 
tion is reconstructed by the maximum-entropy method 
and evaluated in terms of symmetry-adapted spherical 
harmonics. From this analysis, the orientational prob- 
ability density function f (w) has been calculated and 
the rotational potential V(w) that is experienced by a 
C60 molecule in the cubic surrounding at 295 K has 
been obtained, f (w)  shows strong deviations from the 
uniform orientational probability density function that 
would result from isotropic rotation. Accordingly, V(w) 
exhibits well developed minima. The absolute potential 
minimum is found at an Euler-angle set Wl and a second 
set of minima at slightly higher energy at w2. The 
potential difference between V(wl) and V(w2) is 313 K, 
whereas the overall rotational potential barrier height 
amounts to 522 K. w~ and w2 are comparable with the 
major and minor orientations that are adopted by the 
molecules in their low-temperature arrangement. The 
angles t,o 1 and w2 are fixed by the intrinsic geometry 
of the Euler-angle space (a,/3, ,y) under the combined 
action of the cubic site and the icosahedral molecular 
point group. 

1. I n t r o d u c t i o n  

Being the prototype of the large family of fuUerenes 
(Kr~itschmer, Lamb, Fostiropoulus & Huffman, 1990), 
C60 has attracted interest in recent years due to its 
extremely high symmetry and its structural, dynamicat 
and thermodynamic properties. 

The first clear evidence that C60 exhibits full icosa- 
hedral symmetry came from nuclear magnetic reso- 
nance experiments (Johnson, Yanonni, Dorn, Salem & 
Bethune, 1992), which gave a single sharp resonance 
line, consistent with only one type of chemical site 
for all C atoms in this molecule (Fig. 1). As a result, 
the C60 molecule forms a regular truncated icosahedron 
consisting of 20 hexagonal and 12 additional pentagonal 
faces to form a closed shell. Although all C atoms 
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are equivalent, they are held together by two different 
types of bonds. Two of the three bonds of every C 
atom are electron-poor single bonds, the third is an 
electron-rich double bond. The single bonds form reg- 
ular pentagons, whereas the hexagons are built up by 
alternating single and double bonds, whose lengths dl 
and d2 are approximately 1.45 and 1.40/~, respectively 
(Leclerq et al., 1993). The diameter of the C60 molecule 
is 7.1/~ if one regards the centre-of-mass positions of 
the C atoms, but taking account of the size of the 7r- 
electron orbitals associated with each C atom, the outer 
diameter of the C60 molecule, i.e. the distance between 
next-nearest neighbours, is 10.02/~ (Kratschmer, Lamb, 
Fostiropoulus & Huffman, 1990). 

In the solid state, the C60 molecules crystallize at 
room temperature in a cubic face-centred structure 
(Fm3m) with a lattice constant of 14.17 A, where all 
molecules are structurally equivalent. Dynamically, 
they undergo three-dimensional rotations and early 
X-ray powder diffraction data indicated that, to a good 
approximation, these molecules can be considered as 
spinning freely, assuming that every molecule adopts 

1" yl 

l -+ X t 

Fig. 1. The C60 molecule viewed along one of its molecular fivefold 
axes~ andy' denote the coordinate system fixed in the molecule; 
z t is out of the plane of the paper. 
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any orientation with equal probability (Heiney, 1992; 
Heiney et al., 1991; Sachidanandam & Harris, 1991; 
Copley, Neumann, Cappelletti, Kamitakahara, Prince et 
al., 1992). 

Yet neutron scattering and NMR data indicate a hin- 
dered rotation at room temperature. The reorientational 
time was found to be 0.9 x 10-1~s at 300 K, about a 
factor of three slower than for unhindered rotation and 
almost 50% faster than in solution (Neumann et al., 
1991; Copley, Neumann, Cappelletti & Kamitakahara, 
1992; Johnson, Yanonni, Dorn, Salem & Bethune, 1992). 

Obviously, the assumption of completely random ori- 
entation is an oversimplification, since C60 molecules do 
not have spherical symmetry and the interaction between 
molecules depends to some extent on their mutual orien- 
tation. Chow et al. (1992) were the first to demonstrate 
the nonuniform room-temperature electron-density dis- 
tribution from X-ray synchrotron diffraction, which was 
confirmed recently by neutron diffraction (David, Ibber- 
son & Matsuo, 1993; Papoular, Roth, Heger, Haluska & 
Kuzmany, 1993). 

On cooling, C60 shows two anomalies in the thermal 
expansion (Gugenberger et al., 1992) at T1 - 261 K and 
at T2 -~ 90 K. The anomaly at 261 K is a first-order 
phase transition from the f.c.c. (Fm3m) into a primitive 
(Pa3) lattice (Heiney et al., 1991; David, Ibberson, 
Dennis, Hare & Prassides, 1992a), which was at first 
interpreted as a transition from three-dimensional to 
uniaxial rotation. In the meantime, it is known that there 
remains appreciable three-dimensional disorder below T1 
(Biirgi et al., 1992; Michel, Lamoen & David, 1995). At 
7"2 ~- 90 K, a glass transition occurs (Gugenberger et al., 
1992). 

The dynamics in the Pa3 structure are now described 
by reorientations between two energetically slightly dif- 
ferent sets of symmetry-equivalent orientations (David, 
Ibberson, Dennis, Hare & Prassides, 1992a,b). In one of 
them, an electron-rich double bond of one C60 molecule 
is aligned opposite to an electron-poor pentagonal face. 
This orientation was identified as the most probable 
orientation at 10 K by David et al. (1991). In the other 
one, with only slightly higher energy, the electron-rich 
double bond of one C60 molecule is placed opposite 
to an electron-poor hexagonal face. This orientation is 
obtained from the lower-energy orientation by rotation 
of the C60 molecule by 60 ° around a (111) axis. At 
250K, ,~60% of the molecules are found in the 'pentagon 
facing' and ,-~40% in the 'hexagon facing' orientation. 

The reorientational motion described above allows 
a greater fraction of C60 molecules to align in the 
lower-energy configuration, i.e. pentagons facing double 
bonds, as the temperature is decreased. By T - 90 K, 
~83% of the intermolecular alignments are reported 
to be in the lower-energy state, leaving ,-~17% in the 
higher-energy state. Below 90 K, the same fraction of 
the relative intermolecular orientations is maintained 
(David, Ibberson, Dennis, Hare & Prassides, 1992b). 

The single-particle rotational potential introduced by 
James & Keenan (1959) in their seminal paper on 
orientational disorder of methane and later determined 
for small molecules from neutron diffraction data (Vogt 
& Prandl, 1983; Gerlach, Prandl & Vogt, 1984; Hoser, 
Joswig, Prandl & Vogt, 1985) has been introduced and 
worked out for C60 in a series of theoretical papers 
covering many aspects of the high- and low-temperature 
phases (Michel, 1992a,b; Michel, Copley & Neumann, 
1992; Held, 1993; Copley & Michel, 1993; Lamoen 
& Michel, 1994; Michel, Lamoen & David, 1995). A 
comprehensive review on structure and dynamics of C6o 
has been given recently by Axe, Moss & Neumann 
(1994). 

The purpose of the present paper is to derive 
the single-particle hindrance potential for the high- 
temperature phase (Fm3m) strictly from experimental 
data without any a priori  assumptions as to, for example, 
its absolute magnitude. The electron-density distribution 
is obtained from X-ray diffraction experiments, whereas 
the nuclear-density distribution is found from neutron 
diffraction. Since these two densities are physically 
not equivalent, a combined neutron and X-ray study is 
required to distinguish between chemical bonding effects 
and atomic distributions, i.e. preferred orientations of 
C60 molecules. 

The paper is organized as follows. §2 describes the 
neutron and X-ray experiments at room temperature. 
In §3, a review of the theoretical concepts leading to 
the orientational probability density function and the 
rotational potential is given. In §4.1, we use two distinct 
procedures, leading to the same qualitative picture: an 
anisotropic density distribution of the C60 molecules. 
In §§4.2 and 4.3, we obtain the orientational probabil- 
ity density distribution and the rotational potential for 
C60. Consequences for the orientational dynamics are 
discussed in §5. 

2. Experimental and crystal parameters 

The three C~ crystals used in our room-temperature 
study were grown by sublimation (Haluska, Kuzmany, 
Vybornov, Rogl & Fejdi, 1993). Our C60 crystal for the 
X-ray experiment was isometrical (d = 0.2 mm) and 
showed no detectable twins. The cubic lattice parameter 
was refined to 14.152 (2) ~.  A conventional 4-circle 
Stoe diffractometer, equipped with a graphite (002) 
monochromator, was operated at a wavelength AMo K~ = 
0.71073 ~. Using ~v - 20 scans, 1894 Bragg intensities 
were collected up to sin 0/A = 0.65 A -1. They resulted 
in 205 unique reflections with an internal agreement 
factor Rint = 0.039. 

Two neutron experiments were performed at the four- 
circle diffractometer 5C2 at the hot source of the Orphee 
reactor with a neutron wavelength of A = 0.8308 (2) 
selected by a Cu(220) vertically focusing monochroma- 



178 ORIENTATIONAL DISORDER IN C6o 

tor and a 0.25 mm thick erbium filter to reduce A/2 
contamination to less than 0.1%.* 

Our first crystal was about 3 mm 3 in volume and 
showed natural (100) and (111) faces. Two sizable 
twins were detected, originating from stacking faults 
along different [111] directions. Together with the main 
domain of our sample, they correspond to a volume 
contribution of 9.3, 2.3 and 88.4%, respectively. In the 
second crystal (2.8 mm3), with only one detectable twin, 
95% of the volume contributed to the main domain. 

The experiments were performed in such a way that 
only those 'pure' Bragg reflections of the main domain 
orientation were registered that were unaffected by the 
contribution from the minor twins. 

In the first data set, 210 non-twin-affected Bragg 
intensities were measured, using a2 scans up to sin 0/A = 
0.51/~-l ,  and in this way 102 unique reflections (Rint = 
0.022) were obtained. In the second data set, 478 Bragg 
intensifies up to sin 0/A = 0.78/~-1 were collected, 
resulting in 342 unique reflections ( g i n  t - "  0.019). 

Absorption effects are negligible in all three data 
sets (X-ray: #R < 0.005; neutron: #R < 0.0001). A 
correction factor Cext was included in the data analysis 
(§4.1) to account for secondary extinction. 

and the SAF's Hte, of the icosahedral point group of the 
C60 molecule by 

1 
At l Hte,(r') - ~ Ylm'(r )Hm,e,. (2) 

m t = - - I  

The origins of both systems 27 and Z '  coincide, so r 
and r' are identical, e and e' enumerate the different 
SAF's for given I. Coefficients ptme for the cubic point 
group can be found in Bradley & Cracknell (1972) and 
Mailer & Priestley (1966). Analytical expressions for the 
icosahedral SAF's with l = 6 and l = 10 are given by 
Cohan (1958). High-order SAF's for l < 30 have been 
determined by a recursive algorithm by Prandl, Schiebel 
& Wulf (1996). 

To transform one kind of SAF into the other, the 
mixed rotator functions .M are used (Prandl, 1981): 

#te,( f  t) = ~CPte(~)-, '~e'(~), (3) 
e 

where w = (a,/3, 7) is the set of Euler angles that 
transforms the unprimed system into the primed system. 
The mixed rotator functions are given by 

3. Theory 

The structure factor of a rotationally disordered molecu- 
lar crystal is basically derived from the Fourier transform 
of the molecular scattering amplitude. This amplitude is 
at first (Press & Hiiller, 1973; Prandl, 1981) expressed 
in a molecular frame ~7' rigidly connected with the 
molecule in terms of symmetry-adapted spherical har- 
monic functions (SAF's) Hie, (r'). In the next step, this 
amplitude must be transformed into the crystal frame 
27 and be expressed in terms of SAF's Pt~(r) having 
the symmetry of the site occupied by the molecule. 
The third step consists of averaging these amplitude 
contributions with the orientational probability function 
f(to) - f(cz,/3, 7) with the Euler angles (o~,/3, 7). 

We use r = (r, Or, qar), Q = (q, OQ, ~pQ) together with 
the corresponding primed symbols r I, Q, referring to 
271 and unit vectors ~, f,, Q, (~1 in order to indicate 
unequivocally the angular variables Or, (Pr etc. in Ytm(r), 
HIE,(~ t) and Pls(r). 

3.1. Definitions 
The totally symmetric symmetry-adapted functions 

PI8 (r) of the point group of the lattice site of the centre 
of mass of the C6o molecule (m3rn) are given by 

l 

Pte(r) = E Ytm(r)Ptm~ (1) 
m = - - l  

* Lists of X-ray and neutron structure factors have been deposited with 
the IUCr (Reference: SH0066). Copies may be obtained through The 
Managing Editor, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

l 
1 I 1 ,1 l 79,~, (a~)Pm8/-/m' e ' .  A4e~ (w) = ~ (4) 

m , m t  = - - I  
.... 

The 79mtm, (w) are the Wigner functions, which describe 
the rotation of spherical harmonics (Wigner, 1959). 
The mixed rotator functions satisfy the orthonormality 
relation: 

f A A*ll 

(5) 

3.2. Method 
The coherent scattering structure factor of the unit 

cell is given by 

F(Q) -- exp(iQ, r°)T(Q)Fr°t(Q). (6) 

Here, Q = 27rH is the momentum transfer, r ° the 
equilibrium position of the centre of mass of a rigid C60 
molecule, T(Q) the translational part of the scattering 
factor, normally a Debye-Waller factor, and Fr'°t(Q) the 
rotational part. This separation of the translational and 
rotational parts of the structure factor is only valid if the 
translational and rotational parts of the molecular motion 
are not correlated (Press & Hiiller, 1973). The rotational 
structure factor is given by 

Fr°t(Q) = f exp(iQ, r)a(r)  dr = a(Q). (7) 
cell 

To calculate the rotational potential of the C60 molecule, 
consider first the form factor in the molecule-fixed 
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coordinate system 27': 

b(Q') = E exp(iQ',  r')fx~v(Q' ), (8) 
i 

where fx~v(Q) is the X-ray form factor or the neutron 
scattering length. By expanding exp(iQ', r~) through the 
SAF's of the icosahedral group Hm, (0', qJ), one gets 

b(Q') = 47rfx~v(Q' ) E E " l "  ! ^ !  ' JI(Q /m)Hl,e'(ri)IIl,e'(Q'), 
i l~' 

(9) 
where rm is the radius of the C60 molecule. This expan- 
sion can be transformed into the crystal-fixed coordinate 
system 27 by using the transformation properties of the 
SAF's [(3)]. We get 

b(Q) = 47rfx~v(Q ) E ig,(Qrm)-llm' E P,e(t)')M~,(~) 
le'  e 

(10) 

Thus, a(Q) is given by 

a(Q) = 47rfx~v(Q ) E itJt(Qrm)cteP'e(O), (17) 
l e  

where the expansion of exp(iQ, r) into SAF's and the 
orthogonality of the SAF's has been used. The cte can 
be determined from the observed Bragg intensities. From 
(14) and (17), one obtains the relation between the l gee' 
and the observed quantities cte: 

c,e [8rr2/(21 -t- 1)] E l - -  , = g/e, Hm.  (18) 
e I 

Since, for a given 1, for the icosahedral group there is 
only one totally symmetric function IIte, as long as l 
is less than 30, the probability function f(w) can be 
expressed approximately in terms of cle with 1 < 30: 

f(w) = y~[(21 + 1)/87r2](cte/'-Hle,)A4~e,(w). (19) 
l ee '  

with the structure constants (Prandl, 1981) of the disor- 
dered molecule: 

Hte,= Y'~.Hle,(ri). (11) 
i 

The averaged form factor a(Q) can be calculated from 
b(Q) by introducing a probability function f(w) for the 
orientation of the molecular frame 27' with respect to the 
crystal frame 27 (Press & HUller, 1973): 

a(Q) - f f(w)b(Q) dw. (12) 

Expanding f(w) into the mixed rotator functions: 

f (w) E I / = g&,A4~e, (w) (13) 
lee '  

and combining this with (5) and (12), we find an 
expansion of the averaged molecular form factor a(Q)" 

a(Q) = 47rfxA,(Q ) E igt(Qrm) 
l e  

/ - -  ! ^ x [8~r2/(2/+ 1)]Eg&,//teete(Q ). (14) 
e t 

Alternatively, the scattering-length density a(r) can be 
expressed as a convolution of the electron or nuclear 
density of the C atoms PEl(r) or pN(r), respectively, and 
a number density for the centres of the C atoms W(r): 

a(r) = W(r) • PE1,N(r). (15) 

We expand W(r) into SAF's of the crystal system: 

W(r) = [5(r - rm)/r 2] E ctePte(f). (16) 
l e  

If dynamic disorder is assumed to be present, the prob- 
ability function f(w) is alternatively given by the rota- 
tional potential V(w) of the C60 molecule as a Boltzmann 
factor: 

f (w) = exp[-/3V(w)] / f exp[-/3V(w)] d~, (20) 

and so the rotational potential V(w) is 

V(w) = - (1/ /3)  ln[/(w)] + C, (21) 

where 

C = - ( 1 / / 3 ) l n [ f  exp[-/3V(w)] d~]. (22) 

We have used a formalism similar to (1) - (22) earlier to 
derive the coefficients in series expansions of the rotation 
potentials V(w) in terms of mixed rotator functions 
A/~e' (w) (Vogt & Prandl, 1983; Gerlach, Prandl & Vogt, 
1984; Hoser, Joswig, Prandl & Vogt, 1985). Here we 
aim directly at the V(w) given in (21), which to our 
knowledge has not yet been applied earlier either for 
rotational potentials or in particular to the C60 case. 
In applying (21), we avoid difficulties with the high- 
temperature expansion of Boltzmann factors encountered 
as soon as the condition IV(w)I/kT << 1 is not obeyed 
(Lamoen & Michel, 1993). 

4. Application to C60 

4.1. C6O number density 
4.1.1. Maximum-entropy reconstruction. From dif- 

fraction experiments, we obtain a set of unphased 
~, hkl [ I  hkl ~ 1 / 2 structure factors robs "~ ~obsJ . Owing to the 

centrosymmetry of the crystal structure with space group 
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Fm3m, the phases are 0 or 7r. Thus, the determination 
of  the phases reduces to the determination of  signs ± 1. 
Using a simple spherical-shell model,  i.e. the density 
of  the 60 C atoms averaged over a sphere with radius 
3.54/~, we carded out a preliminary phasing of  the 
structure factors. These signs were subsequently coupled 
to the measured moduli  of  the structure factors and 
three-dimensional electron as well as nuclear densities 
are reconstructed by the maximum-entropy method 

(MaxEnt). A detailed descriptiOn of the MaxEnt  program 
we use was given previously (Papoular & Gillon, 
1990a,b). Technically, the latter procedure involved 
a 64 x 64 × 64 discretization of  the unit cell and the 
three-dimensional densities were retrieved as sets of  
64 sections at constant z, including a section at z = 0 
(Figs. 2a, b). 

"N f 
(a) 

(b) 

Fig. 2. (001) section at z -- 0 through (a) the proton number 
density and (b) electron density obtained by MaxEnt reconstruction. 
15 equidistant level lines between the minimum and maximum 
densities. 

(b) 

(a) 

Fig. 3. Anisotropic part (stereographic projection) of the radially 
averaged scattering density for a C60 molecule from MaxEnt. (a) 
Nuclear scattering density. (b) Electron density. Ten equidistant 
level lines between the minimum and maximum densities. One looks 
down along [111], [01i] points to the right and [2ii] downwards. 
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Table 1. Results of the refinement with symmetry- 
adapted functions 

ZhulFohU I ; R w =  L J 
X-ray Neutron I Neutron II 

C~xt 0.123 (13) 0.0 0.0712 (34) 
u (A 2) 0.0187 (4) 0.0191 (4) 0.0177(4) 
r (A) 3.5395 (4) 3.5453 (8) 3.5454 (7) 
c 6 , 1  -0 .0180(11)  -0 .0083 (17) -0.0141 (13) 
Cl0,1 0.0132 (13) 0.0104 (20) 0.0143 (18) 
clz, 1 0.0046 (17) 0.0031 (23) 0.0061 (29) 
c12,2 0.0274 (17) 0.0293 (26) 0.0305 (27) 
c16 ,1  -0 .0134  (31) -0 .0235 (50) -0 .0089  (57) 
c16,2 0.0066 (28) 0.0104 (43) 0.0021 (53) 
cl8A --0.0025 (25) 0.0011 (49) 0.0062 (73) 
c18,2 0.0204 (30) 0.0100 (45) 0.0258 (62) 
R 0.053 0.048 0.156 
Rw 0.018 0.012 0.011 
Nh~t 205 102 342 

Fig. 2 demonstrates that the averaged C60 molecules 
seen by either X-rays or neutrons form very nearly 
isotropic empty shells, with no evidence for extra density 
either inside or between them. 

In order to compare the results of X-ray and neutron 
data with the analysis using symmetry-adapted func- 
tions, the densities were subsequently interpolated on 
spheres of selected radii. Different shells with increasing 
radii were finally added together (Fig. 3). Thus, clear 
evidence is found for an additional modulation of both 
nuclear and electron densities and the anisotropy of the 
radially averaged atomic density of the C6o molecules in 
the high-temperature phase. 

4.1.2. Analysis with cubic symmetry-adapted func- 
tions (SAF's). Using the method given in §3.2, the 

~ h k l  ,~  [ r h k l ~ l / 2  measured robs -- ('obs) are now described by an 
expansion into cubic symmetry-adapted spherical har- 
monics (6) and (17). The observed anisotropy of the 
nuclear- and electron-density distributions is determined 
by a least-squares fit of the expansion coefficients ct~ 

hkl with l > 0 to the observed robs. 
Because for the cubic point group m3m the number of 

SAF's for a given l is equal to the number of partitions 
of I into 6's and 4's, the nonexistence of odd terms in the 
expansion is easily seen. In addition, if the C60 molecule 
possesses the full icosahedral symmetry, the number of 
SAF's is given by the number of partitions of l into 
6's and 10's (Laporte, 1948). Consequently, l = 6 will 
be the first term common to both sets of SAF's in the 
expansion followed by l -  10, 12, 16, 18 , . . . .  

Other adjustable parameters are the radius r of the C60 
sphere, an isotropic temperature factor U, a scaling factor 
and ¢ext to account for secondary extinction according to 
SHELXL93 (Sheldrick, 1993). 

The refined parameters up to 1 = 18 are given in 
Table 1. The final R values converged to --w/?neutr II _ _  0.010 
and R X-ray --  0.018 for the neutron and X-ray data, 

respectively. R values were not significantly improved 
either by including functions of higher order or by the 
additional refinement of I = 4, 8 and 14 allowed by the 
cubic site symmetry but forbidden by the icosahedral 
group of the molecule (Laporte, 1948). For comparison, 
a refinement of an isotropic carbon sphere, i.e. adjusting 
just the zero-order term in the expansion, leads to poor 
R values: Rw neutrlI - -  0.015 and R X-ray ---- 0.037 for the 
neutron and X-ray data, respectively. 

(a) 

(b) 

Fig. 4. Stereographic projection of the anisotropic part of the modelled 
(a) nuclear- and (b) electron-density distributions. Level lines are 
drawn in steps of 2 % from the density of an isotropic carbon sphere. 
Solid level lines correspond to excess density, i.e. density greater 
than the density of an isotropic averaged sphere, dashed level lines 
to a density deficit. One looks down along [111], [Olil points to 

_ _  

the right and [211] downwards. 
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Fig. 4 shows the anisotropic part of the nuclear- 
and electron-density distributions in stereographic pro- 
jections viewed along the [111] direction. 48 maxima 
are found at polar angles (0, q o) = (35.00,66.3 °) 
and symmetry-related coordinates. They form regular 
hexagons with an edge length of 1.47/~ around the (111) 
directions where the minima in the density distribution 
are located. The maximum values of the nuclear density 
exceed the level of the density of an isotropic carbon 
sphere by 10.1%, whereas the minima only come up to 
83.7%. The electron density reflects the nuclear density 
and no essential differences are found. 

4.2. Orientational probability density function 
The deviations of the nuclear- and electron-density 

distributions from the uniform density expected from 
isotropic rotation clearly demonstrate that some orienta- 
tions of the C60 molecules are more probable than others. 
But, owing to the very high symmetry, the density 

distribution does not give any direct hints about the most 
favourable orientations. The reason becomes immedi- 
ately evident: the observed number density W(r) is a 
convolution between the orientational probability density 
f(to) and the molecular number density. Therefore, we 
attempt to develop the orientational probability density 
function. 

To describe the orientation of the C60 molecule in 
the cubic frame, a set of Euler angles to = (a,/3, 7) is 
used. We take to = 0 for the molecule oriented with 
its fivefold axis aligned parallel to the crystal fourfold 
z axis (Cohan, 1958; Prandl, Schiebel & Wulf, 1996). 
One of the molecular twofold axes that is perpendicular 
to this fivefold axis is chosen as the y axis and coincides 
with another crystal fourfold axis. In this way, the xz 
plane coincides with one of the molecular mirror planes 
as well as with a crystal mirror plane. Finally, the x axis 
is chosen perpendicular to y and z as usual (Fig. 1). 
In choosing the coordinate system of Fig. 1, we were 
governed by the argument of mathematical economy 

(b) (a) 

i 

I 

(c) (d) (e) 

Fig. 5. C60 molecule in the orientation oal viewed along different crystal axes. (a) [11i]; (b) [111], [111], Jill]; (c) [100], [010], [001]; 
(d) [110], [101], [011]; (e) [110], [iO1], [01i]. 
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put forward by Cohan (1958), which was accepted in 
the general literature on irreducible representation of the 
icosahedral group, as we discuss in a preceding paper 
(Prandl, Schiebel & Wulf, 1996). Specifically for C60, a 
second, mathematically less economic, 'standard orien- 
tation' with three mutually perpendicular axes parallel to 
the cubic x, y, z directions has been introduced (David 
et al., 1991; Harris & Sachidanandam, 1992). It is clear 
from general group-theoretical invariance principles that 
any series representation of physical quantities must 
have identical coefficients independent of the choice of 
the coordinate system as long as the principles governing 
such a symmetry-adapted expansion, namely that the 
physical objects like number densities or orientational 
probability densities be described in the same reference 
system of coordinates, are respected. For the demonstra- 
tion of experimental results, e.g. the dependence off(w) 
or V(w) on the rotation about a molecular axis parallel 
to a lattice direction (cf. Figs. 7-10), one has to apply a 
rotational algorithm in either case (Altmann, 1986). 

With our choice for w = 0, f (w )  = f(o~,/3,7) 
shows fourfold symmetry in a and fivefold symmetry 
in 7. Consequently, the Euler-angle space may easily be 
reduced to 0 _< o~ < 90 °, 0 _</3 < 180 °, as usual, and 
0 < '7 < 72 °. 

The orientational probability density function is then 
evaluated according to (19). The molecular constants 
IIt,~, are calculated from (11) using the bond-length ratio 
determined by Leclerq et al. (1993). 

An isotropically rotating C60 molecule would adopt 
every orientation with equal probability, therefore f (w)  
would be constant with f (w )  = fo  = 1/871_2 = 
0.01267. The probability density determined, however, 
shows very well developed maxima, which were 
found in a 3D search in the Euler-angle space. The 
main m a x i m a  fml(tol) occur for all data sets at 
031 = (45 °,/31,0 °) = (45 °, 87.89 °, 0°). In addition, 
we find a second, smaller, m a x i m u m  fm2(032) at 
W2 = (45 °,/32, 0 °) = (45 °, 17.36 °, 0°). Both types 
of maximum are found at 240 symmetry-equivalent 

(a) (b) 

(c) (d) (e) 

Fig. 6. C_6o molecule in the orientation ;02 viewed along different crystal axes. (a) [111]; (b) [11i], [111], [i11]; (c) [100], [010], [001]; 
(d) [110], [iOl], [Oli]; (e) [110], [1011, [0111. 
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Table 2. Maximum and minimum values of the orien- 
rational density distribution function obtained from the 

X-ray and neutron data 

A V = Vmax- VM1; g12 --  V(6o 2 ) - g(to 1 ). 

X-ray Neutron I Neutron 11 

f(wl ) 0.0390 (12) 0.0374 (20) 0.0383 (20) 
f(w2) 0.0100(8) 0.0143(16) 0.0133(17) 
f(~O)min 0.0066 (4) 0.0065 (8) 0.0065 (3) 
AV (K) 525 (20) 516 (38) 522 (20) 
AV12 (K) 383 (27) 283 (35) 313 (41) 

points in Euler space. /31 a s  well as /32 are special 
rotations determined by the condition that a threefold 
molecular and a threefold crystal axis should coincide. 
Specifically, we find /31 = 180 ° - 0 ~ 5 3 -  Ot43 and 
/32 - -  O ~ 4 3 -  Ot53, where 0~43 is the angle between a 
fourfold and a threefold crystalline axis (O~43 = 54.74 °) 
and o~53 is the angle between a fivefold and a threefold 
molecular axis {cos c~53 = [ ( 3 -  7-)/1511/2(1 + 7-) with 
7- = (1/2)(51/2 + 1)}. 

The absolute values o f f  mx and f m2 for all three data 
sets are given in Table 2. Figs. 5 and 6 show the C60 
molecule in the orientation W l and w2 viewed along 
different crystal axes. From the two sets of Euler angles 
(45°,/3x,0 °) and (45°,/32,0°), it is obvious that the 
molecular mirror plane that initially coincides with the 
[111] crystal mirror plane is rotated by 45 ° to exactly 
the [110] mirror plane. Simultaneously, the molecular y 
axis is rotated to the [ l i0 ]  direction. Finally, a rotation 
around the molecular y axis about/31 = 87.89 ° nearly 
moves the fivefold axis to [110] but aligns exactly a 
molecular and a crystalline threefold axis. A rotation 
around the molecular y axis about/32 = 17.36 ° moves 
a hexagon towards [110] but also results in a molecular 
and a crystalline threefold axis aligned parallel to each 
other. 

Thus, both orientations are characterized by the coin- 
cidence of a maximum number of symmetry elements. 
The orientation w2 may be obtained from wl either by a 
rotation by 60 ° around the crystalline threefold axis or, 
alternatively, by a rotation of 41.81 o around a crystalline 
twofold axis (cf Figs. 5d and 6d). 

To demonstrate the shape of the different maxima, 
Fig. 7 shows a two-dimensional section through f (w)  at 
"7 = 0 °. Two" of the main maxima M1 show up as well 
developed peaks, whereas two of the secondary maxima 
M2 are found as lower peaks. The other peaks found in 
Fig. 7 are due to tangential cuts through main maxima 
located at 3' # 0 °. All maxima have a full width at half- 
maximum of roughly 20 ° . This is demonstrated in Fig. 
8, where a one-dimensional cut through the maxima is 
drawn. 

4.3. The rotational hindrance potential 

Once the orientational probability density function 
is evaluated, the rotational hindrance potential is eas- 

ily obtained from (21): maxima in f (w)  correspond 
to minima in V(w) and vice versa. Therefore, V(Wl) 
represents an absolute potential minimum and V(w2) a 
second relative minimum. Fig. 9 shows the hindrance 
potential corresponding to f (w)  of Fig. 8. The overall 
potential height amounts to 522 K, whereas the potential 
difference between the two sets of potential minima is 
313K. 

In Figs. 10(a)-(d), we show the dependence of V(w) 
on the rotation angle qo for some specific uniaxial ro- 
tations of the C60 molecules. Fig. 10(a) shows V(w) = 
V(cp) for a rotation of the molecule around one of its 
threefold axes if this axis is parallel to the cubic [111] 
direction, denoted as R3II3. A rotation of A~p = 120 ° 
moves the molecule from one minimum orientation wl to 
a symmetry-equivalent one w~, whereas a rotation Aqo = 
60 ° results in the orientation w2. Fig. 10(b) shows V(qo) 
for a rotation around a molecular twofold axis parallel to 
the cubic [110] direction R2112. Starting at the absolute 
potential minimum, a rotation A ~  = 41.81 ° results in 
the second-order minimum orientation w2; after another 
rotation of Acp = 28.72 °, the next secondary minimum 
is reached; and, after an additional Acp = 41.81 °, an 
absolute potential minimum at w~ is found again. Fig. 

1 8 0 ~  

0 45 90 

06  

Fig. 7. Two-dimensional section through the orientational probability 
density function (0 < ta < 90 °,0 < :3 < 180 ° ,~ = 0°).The 
maxima are marked by Mx and M2. 
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10(c) shows the dependence of the potential on e3ll2 and 
on R5H2. The absolute potential minimum is not fully 
reached with R5112 but the potential well separating the 
minima amounts only to 207 K. 

Fig. 10(a) may be directly compared with results of a 
forthcoming paper by Chow, Wochner, Reiter, Moss & 
Axe (quoted by Axe, Moss & Neumann, 1994) and by 
Lamoen & Michel (1993), who use a high-temperature 
approximation of the Boltzmann factor in their analysis 
of the same experimental data by Chow et al. (1992), 
since in all three cases V(w) is given by the rotation 
(R3II3). The only difference is an offset in the rotation 
angle qo: The standard orientation referred to earlier 
corresponds in Fig. 10(a) to an angle qo -- 120 ° - qo0, 
where qo0 = 97.76 ° is given by the intrinsic geometry 
of the Euler-angle space under the action of both the 
cubic site and the icosahedral molecular point group. 
Taking this into account, we find sin qo0 = r (3 /8 )  1/2 
and costa = [ ( 5 -  3r)/8] 1/2 with r = (1/2)(51/2 + 1). 
With our choice, the M1 occur at n x 120 ° and the 
M2 at 4-60 ° from M1. This means that the locations of 
the extrema are due to symmetrical properties of the 
Euler-angle space and not to the numerical size of V(w). 

We find the secondary minimum M2 in Fig. 10(a) 
by AV21 = VM2 --VM~ = 313K above the absolute 
minimum M1 and the maxima by AV -- Vmax - VM, = 

522 K above M1. Chow et al. (in Axe, Moss & Neumann, 
1994) find AV = 539 K, which compares well with our 
finding. The ZIV = 800 K by Lamoen & Michel (1993) 
is higher, apparently as the result of their approximation. 
The secondary minimum 342 is also seen by Lamoen & 
Michel (1993), whereas it is replaced by a plateau by 
Chow et al. This latter feature is puzzling, since our 
Fig. 8 has small maxima at the 342 positions for Chow's 
data, which become local minima of V(w). Following 
an erratum to the article by Axe, Moss & Neumann 
(1994), this discrepancy has been removed very recently: 
Accordingly, Chow et al., in their forthcoming paper, 
also find minima M2 at Zlqo = + 60 ° from M1 (Fig. 
10a). 

The potential maxima found are relatively low as 
compared with the thermal energy of 295 K available 
to the system. For the actual rotational diffusion of the 
molecules, one has to take into account that pathways 
over saddle points with lower activation energy connect 
the energy minima in V(w). Gerling & Htiller (1983) 
have shown by a molecular dynamics simulation of the 
rotation of NH4 that these paths play an essential role in 
the rotational dynamics if random forces are present. 

5. Discussion 

The analysis of diffraction data of C60 single crystals 
given in {}4.1 clearly demonstrates that the averaged 
C60 molecules seen by either X-rays or neutrons form I I I I 

(a) 
t ......... (b) 

0,04 . . . . . .  (c) 
. . . .  (d) 200 

I (e) .......... 100 ' ' i i 7 - - i i "  ' .~" :~ ii ! -g  
~" 0 

0,02 

~" -100 

0,00' '' ' ' !' ":'" .... 

~200 6 • 

0 45 90 -300 

P 
Fig. 8. One-dimensional cut through the orientational density distri- "4000 45 90 135 180 

bution with o~ -- 45 ° and 3. = 0 ° . (a) Neutron II with error bars 
calculated from the standard deviation given in Table 1 ; (b) neutron 
I; (c) X-ray (Table 1). For comparison, f (to) calculated with the 
parameter set from (d) Chow et al. (1992) and (e) David et al. Fig. 9. One-dimensional cut through the rotational hindrance potential 
(1993) (corrected by a factor 2-1/2, as pointed out by Michel, calculated fromf(to) shown in Fig. 8. (a) Neutron II, (b) neutron 
Lamoen & David, 1995), is included. I, (c) X-ray (Table 1). 
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very nearly isotropic empty shells, with no evidence for 
extra density either inside or between them (Fig. 2). 
Reconstruction of  the nuclear- or electron-density dis- 
tribution by the maximum-entropy method confirms the 
anisotropy of  the averaged density of  the C60 molecules 
in the high-temperature phase. For this reconstruction, a 
quasi model- independent  phasing of  the measured [Foh~l 
is applied. It turned out in the subsequent refinement 

with symmetry-adapted functions that indeed the main 
contribution to the calculated structure factors comes 
from the isotropic part in (7) and therefore determines 
the phases. In fact, our results for the observed density 
distribution obtained by MaxEnt  as well as with the 
expansion into SAF's  are in excellent agreement with 
each other and with those published by Chow et al. 
(1992) from synchrotron diffraction data. In particu- 
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360 
Fig. 10. The rotational hindrance potential for uniaxial rotations 0 __% 

~,- < 360 ° around a specified molecular axis aligned with a crystal 
axis. (a) Molecular threefold axis aligned with crystal threefold 
axis. (b) Molecular twofold axis aligned with crystal twofold axis. 
(c) Molecular threefold axis aligned with crystal twofold axis and 
molecular fivefold axis aligned with crystal twofold axis. 
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lar, our modelled electron density (Fig. 4b) is nearly 
identical with Chow et al.'s. 

The orientational probability density distribution f(o;) 
evaluated in §4.2 shows two different types of max- 
ima at o;1 and o;2. From Figs. 5 and 6, it is obvious 
that these orientations are related to the major and 
minor orientations found by David, Ibberson & Matsuo 
(1993). Namely, the orientation o;1 for which the ab- 
solute maximum off(o;1) is found corresponds to the 
major orientation with a molecular fivefold axis almost 
parallel to the [110] direction. In addition, the second 
less-favourable orientation o;2, established by a relative 
maximum off(o;) ,  corresponds to the minor orientation 
with a molecular threefold axis almost parallel to the 
[ 110] direction. 

From our results, a deviation of the molecular fivefold 
axis from [110] by 2.11 ° is found. This is in good 
agreement with the 2.2 ° found by Biirgi, Restori & 
Schwarzenbach (1993) and may be compared with the 
deviation of 0.05218 ° reported for the low-temperature 
phase Pa3 (David, Ibberson & Matsuo, 1993). 

From the results given in §4.2, a more classical 
crystallographic model in terms of atomic coordinates, 
displacement factors and population parameters may be 
constructed. Therefore, we calculated two times 60 C- 
atom positions denoted by {M1} and {M2}, which are 
determined by the radius of the carbon shell r = 3.54/~ 
found in the refinement with SAF and o;1 and o;2. 
We used these atom positions as input for SHELX76 
(Sheldrick, 1976). The refined parameters were extinc- 
tion correction, one isotropic temperature parameter for 
all C atoms, and occupancies O 1 for the set {M1} and 
o2 for the set {M2}. The scaling parameter and all 
atom coordinates are kept fixed. With only four refined 
parameters, a weighted R value of--wPMI+M2 ---- 0.05 is 
reached. For comparison, refinement of just the set {M1 } 
yielded Rf f  ~ = 0.10 and just {M2} yielded Rf f  2 = 0.12. 

Considering the occupancy of the two molecular 
settings {M1} and {M2}, we find 61.11 (2)% of the 
molecules in the orientation o;1 and 38.88 (1)% in o;2. 
This is in agreement with the ratio found in the Pa3 
structure on heating just before the phase transition by 
David, Ibberson & Matsuo (1993). 

This result may also be compared with the structure 
analysis by BiJrgi, Restori & Schwarzenbach (1993), 
who found 61% of the molecules in the major orientation 
with hexagons centred on [111 ], but with the molecular 
mirror plane rotated by 4-7.1 o compared with the crystal 
mirror plane. They found no evidence for an additional 
minor orientation. Instead, they stated that the remaining 
39% are best described by an isotropic distribution. This 
difficulty may be attributed to the secondary character of 
the minimum M2: unless the search is very close to M2 
(cf. Figs. 9 and 10a,c), the refinement drops into the 
main minimum and, compared with the set {M1 } alone, 
an additional homogeneous distribution as introduced by 
Biirgi, Restori & Schwarzenbach (1993) may improve 

the residual. In our case, M2 and therefore the {M2 } set 
was known precisely and therefore the stability of this 
set was not at stake. 

With the above-described SHELX refinement, we re- 
duced the information given by the orientational prob- 
ability density function f(o;) to the occupancy of two 
particular orientations. This means we change from a 
continuous model to a discrete one by substituting f(o;) 
by a set of 6 functions. Considering the widths of the 
determined maxima, a lot of information is lost. We 
would like to emphasize that any discretization of the 
densities or the orientational probability densities of 
an orientationally disordered crystal is a compromise 
between the dynamic nature and a conventional crys- 
tallographic description of the phenomenon. 

Details of the underlying dynamics, which leads to the 
observed proton or electron density, are easily obtained 
fromf(o;) by a calculation of the orientational hindering 
potential V(o;). Maxima in the orientational probability 
density function correspond to minima in the rotational 
hindrance potential. With an overall potential barrier 
height of 522 K, in principle every path that brings the 
molecule from one minimum orientation to another one 
is possible. Nevertheless, one may address the question 
of which way to pass is the easiest one? Therefore, we 
evaluated the rotational hindrance potential for some uni- 
axial rotations. As is seen from Fig. 10, R3113 (rotation 
of the molecule around a threefold axis aligned parallel 
to [111]) or R2112 (twofold axis aligned parallel to 
[110]) involve the full barrier height, whereas for R3112 
and R5115 the hindering potential well is rather low. In 
particular, R5112 is favourable because it occurs with very 
low potential values. But none of these uniaxial rotations 
allows access to all 2 x 240 minima orientations. In 
principle, one can distinguish three possible transitions: 
firstly, a rotation R(O;1 --~ 0,/2) that brings the molecule 
from one of the absolute minima V(o;1) to a second- 
order minimum V(o;2), secondly, a rotation R(o;l ~ o;~ ) 
and, finally, R(o;2 ~ o;~2). From the results mentioned 
above, it is obvious that R(o;l --* o;2) involves the full 
potential well, regardless of whether R3113 or R2[[2 are 
used. R(o;1 --~ o;~) and R(o;2 --~ o;~) may be achieved by 
R2112 and alternatively by R3112 or R5112. The hindering 
potential for these rotations is even weaker but with 
R3112 and R5112 no change from o;1 to o;2 is possible. 

Therefore, we conclude that at sufficiently high tem- 
peratures the molecules can easily access all observed 
minimum orientations undergoing three-dimensional ro- 
tations. If, however, the temperature is lowered, tran- 
sitions R(o;1 ~ o;2) will die out first. As a result, the 
molecules will be trapped in either o;1 or o;2. Because the 
potential minimum at o;1 is deeper compared with o;2, the 
majority of the molecules is found at o;1. Nevertheless, 
all molecules still have the opportunity to move between 
240 distinct orientations by a combination of R2112 
and R51]2 or R2[[2 and R3112, respectively. Thus, the 
rotation axis changes between different (110) directions. 
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Finally, on further cooling, the molecules may undergo 
uniaxial rotations around either their three- or fivefold 
axes parallel to (110). Details of the actual pathways 
chosen by the molecules and allowed by the inertial 
forces and the available thermal energies can only be 
given by molecular-dynamics simulations in a realistic 
rotational potential V(ta). 

We acknowledge support of this investigation by the 
DFG (project PR44/7-1) and by the BMFT (projects 
03-HA3AAC and 03-PR3TUE-0). 
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